(三)背景资料:某新建铁路单线隧道长6200米,进口里程为DKl0+150,出口里程为DKl6+350。隧道沿线路走向为90‰的上坡。隧道进口段埋深很大,围岩以Ⅲ、Ⅳ级为主,节理裂隙不发育,整体性较好;出口段埋深较浅,围岩软弱,地下水发育,围岩以Ⅳ、V级为主。在DKl6+200处地表有一自然冲沟,沟内常年流水,但水量不大;此处隧道最小埋深为8米;洞身有1个大的断层,断层处围岩破碎,地下水发育,围岩为V级。设计要求,该隧道在断层地段采用ф108管棚超前预支护;在软弱围岩和断层地段采用综合超前地质预报方法。
施工单位采取进、出口两个工作面掘进,计划贯通里程为DKl3+650。当进口开挖到DKl0+950处时,掌子面发生岩爆。施工单位立即采取了减小开挖循环进尺和对作业人员、机械设备加强防护的措施,但效果不佳。在出口断层地段,施工单位采取了地质素描、地质雷达和红外线探水的地质预报方法。
(一)背景资料:某增建铁路隧道长4650米,里程范围为DKl80+500一DKl85+150,位于营业线隧道右侧。增建隧道与营业线隧道均为单线隧道,线间距为18~50米,其中增建隧道DKl80+500~DKl84+200段与营业线隧道线间距为18米,DKl84+200~DKl85+150段与营业线隧道线间距由18米渐变到50米。增建隧道穿越地层为Ⅳ、V级围岩,岩溶发育。增建隧道除设进、出口工作面外,中间还设1座斜井。营业线隧道经过多年运营,存在多处病害,计划在增建隧道完工后大修。增建隧道施工期间,营业线正常运营。
斜井作业队进入正洞施工后,为赶工期,加大了施工组织设计中确定的循环进尺,在掘进过程中,突然发生了突水、突泥事故。
当出口段采用同一爆破方案施工到950米处时,因爆破作业导致邻近的营业线隧道拱顶掉块,中断列车运行2小时。
(一)背景资料:某增建铁路隧道长4650米,里程范围为DKl80+500一DKl85+150,位于营业线隧道右侧。增建隧道与营业线隧道均为单线隧道,线间距为18~50米,其中增建隧道DKl80+500~DKl84+200段与营业线隧道线间距为18米,DKl84+200~DKl85+150段与营业线隧道线间距由18米渐变到50米。增建隧道穿越地层为Ⅳ、V级围岩,岩溶发育。增建隧道除设进、出口工作面外,中间还设1座斜井。营业线隧道经过多年运营,存在多处病害,计划在增建隧道完工后大修。增建隧道施工期间,营业线正常运营。
斜井作业队进入正洞施工后,为赶工期,加大了施工组织设计中确定的循环进尺,在掘进过程中,突然发生了突水、突泥事故。
当出口段采用同一爆破方案施工到950米处时,因爆破作业导致邻近的营业线隧道拱顶掉块,中断列车运行2小时。
(一)背景资料:某增建铁路隧道长4650米,里程范围为DKl80+500一DKl85+150,位于营业线隧道右侧。增建隧道与营业线隧道均为单线隧道,线间距为18~50米,其中增建隧道DKl80+500~DKl84+200段与营业线隧道线间距为18米,DKl84+200~DKl85+150段与营业线隧道线间距由18米渐变到50米。增建隧道穿越地层为Ⅳ、V级围岩,岩溶发育。增建隧道除设进、出口工作面外,中间还设1座斜井。营业线隧道经过多年运营,存在多处病害,计划在增建隧道完工后大修。增建隧道施工期间,营业线正常运营。
斜井作业队进入正洞施工后,为赶工期,加大了施工组织设计中确定的循环进尺,在掘进过程中,突然发生了突水、突泥事故。
当出口段采用同一爆破方案施工到950米处时,因爆破作业导致邻近的营业线隧道拱顶掉块,中断列车运行2小时。
(三)背景资料:某新建铁路单线隧道长6200米,进口里程为DKl0+150,出口里程为DKl6+350。隧道沿线路走向为90‰的上坡。隧道进口段埋深很大,围岩以Ⅲ、Ⅳ级为主,节理裂隙不发育,整体性较好;出口段埋深较浅,围岩软弱,地下水发育,围岩以Ⅳ、V级为主。在DKl6+200处地表有一自然冲沟,沟内常年流水,但水量不大;此处隧道最小埋深为8米;洞身有1个大的断层,断层处围岩破碎,地下水发育,围岩为V级。设计要求,该隧道在断层地段采用ф108管棚超前预支护;在软弱围岩和断层地段采用综合超前地质预报方法。
施工单位采取进、出口两个工作面掘进,计划贯通里程为DKl3+650。当进口开挖到DKl0+950处时,掌子面发生岩爆。施工单位立即采取了减小开挖循环进尺和对作业人员、机械设备加强防护的措施,但效果不佳。在出口断层地段,施工单位采取了地质素描、地质雷达和红外线探水的地质预报方法。
采用有轨运输;理由:单线客货共线隧道,断面小;隧道较长;坡度9%在允许范围。为加强通风排烟,故考虑有轨运输。
(三)背景资料:某新建铁路单线隧道长6200米,进口里程为DKl0+150,出口里程为DKl6+350。隧道沿线路走向为90‰的上坡。隧道进口段埋深很大,围岩以Ⅲ、Ⅳ级为主,节理裂隙不发育,整体性较好;出口段埋深较浅,围岩软弱,地下水发育,围岩以Ⅳ、V级为主。在DKl6+200处地表有一自然冲沟,沟内常年流水,但水量不大;此处隧道最小埋深为8米;洞身有1个大的断层,断层处围岩破碎,地下水发育,围岩为V级。设计要求,该隧道在断层地段采用ф108管棚超前预支护;在软弱围岩和断层地段采用综合超前地质预报方法。
施工单位采取进、出口两个工作面掘进,计划贯通里程为DKl3+650。当进口开挖到DKl0+950处时,掌子面发生岩爆。施工单位立即采取了减小开挖循环进尺和对作业人员、机械设备加强防护的措施,但效果不佳。在出口断层地段,施工单位采取了地质素描、地质雷达和红外线探水的地质预报方法。
隧道出口为下坡掘进,9%坡度较大,为反坡排水,需要洞内设积水坑,采用多级泵进行梯级排水。
(三)背景资料:某新建铁路单线隧道长6200米,进口里程为DKl0+150,出口里程为DKl6+350。隧道沿线路走向为90‰的上坡。隧道进口段埋深很大,围岩以Ⅲ、Ⅳ级为主,节理裂隙不发育,整体性较好;出口段埋深较浅,围岩软弱,地下水发育,围岩以Ⅳ、V级为主。在DKl6+200处地表有一自然冲沟,沟内常年流水,但水量不大;此处隧道最小埋深为8米;洞身有1个大的断层,断层处围岩破碎,地下水发育,围岩为V级。设计要求,该隧道在断层地段采用ф108管棚超前预支护;在软弱围岩和断层地段采用综合超前地质预报方法。
施工单位采取进、出口两个工作面掘进,计划贯通里程为DKl3+650。当进口开挖到DKl0+950处时,掌子面发生岩爆。施工单位立即采取了减小开挖循环进尺和对作业人员、机械设备加强防护的措施,但效果不佳。在出口断层地段,施工单位采取了地质素描、地质雷达和红外线探水的地质预报方法。
(三)背景资料:某新建铁路单线隧道长6200米,进口里程为DKl0+150,出口里程为DKl6+350。隧道沿线路走向为90‰的上坡。隧道进口段埋深很大,围岩以Ⅲ、Ⅳ级为主,节理裂隙不发育,整体性较好;出口段埋深较浅,围岩软弱,地下水发育,围岩以Ⅳ、V级为主。在DKl6+200处地表有一自然冲沟,沟内常年流水,但水量不大;此处隧道最小埋深为8米;洞身有1个大的断层,断层处围岩破碎,地下水发育,围岩为V级。设计要求,该隧道在断层地段采用ф108管棚超前预支护;在软弱围岩和断层地段采用综合超前地质预报方法。
施工单位采取进、出口两个工作面掘进,计划贯通里程为DKl3+650。当进口开挖到DKl0+950处时,掌子面发生岩爆。施工单位立即采取了减小开挖循环进尺和对作业人员、机械设备加强防护的措施,但效果不佳。在出口断层地段,施工单位采取了地质素描、地质雷达和红外线探水的地质预报方法。
(三)背景资料:某新建铁路单线隧道长6200米,进口里程为DKl0+150,出口里程为DKl6+350。隧道沿线路走向为90‰的上坡。隧道进口段埋深很大,围岩以Ⅲ、Ⅳ级为主,节理裂隙不发育,整体性较好;出口段埋深较浅,围岩软弱,地下水发育,围岩以Ⅳ、V级为主。在DKl6+200处地表有一自然冲沟,沟内常年流水,但水量不大;此处隧道最小埋深为8米;洞身有1个大的断层,断层处围岩破碎,地下水发育,围岩为V级。设计要求,该隧道在断层地段采用ф108管棚超前预支护;在软弱围岩和断层地段采用综合超前地质预报方法。
施工单位采取进、出口两个工作面掘进,计划贯通里程为DKl3+650。当进口开挖到DKl0+950处时,掌子面发生岩爆。施工单位立即采取了减小开挖循环进尺和对作业人员、机械设备加强防护的措施,但效果不佳。在出口断层地段,施工单位采取了地质素描、地质雷达和红外线探水的地质预报方法。
(四)背景资料:
某新建铁路桥梁工程一标段共有595孔32米简支整孔箱梁,分布于23座桥上。其中1号特大桥的30孔箱梁采用移动模架施工,其他采用预制架设施工。
制梁场场地宽阔平整:制梁采用固定式外模和整体式内模,并按1:1配置;存梁采用单层存梁方式;制梁占用台座的周期为4—6天,存梁周期为38天,梁场生产箱梁能力为每天2孔;采用900吨轮胎式搬梁机移梁;运梁车需经便道上桥出梁。
1号特大桥位于峡谷之中,墩高变化较大(4米~30米),采用2台移动模架同步施工。每台移动模架拼装时间为1.5个月,生产能力为每月2孔。
(四)背景资料:
某新建铁路桥梁工程一标段共有595孔32米简支整孔箱梁,分布于23座桥上。其中1号特大桥的30孔箱梁采用移动模架施工,其他采用预制架设施工。
制梁场场地宽阔平整:制梁采用固定式外模和整体式内模,并按1:1配置;存梁采用单层存梁方式;制梁占用台座的周期为4—6天,存梁周期为38天,梁场生产箱梁能力为每天2孔;采用900吨轮胎式搬梁机移梁;运梁车需经便道上桥出梁。
1号特大桥位于峡谷之中,墩高变化较大(4米~30米),采用2台移动模架同步施工。每台移动模架拼装时间为1.5个月,生产能力为每月2孔。
初制粱台座、存梁台座以外,还应该有静载实验台座、内膜存放台座、顶板钢筋帮扎台座、底腹板钢筋帮扎台座。
(四)背景资料:
某新建铁路桥梁工程一标段共有595孔32米简支整孔箱梁,分布于23座桥上。其中1号特大桥的30孔箱梁采用移动模架施工,其他采用预制架设施工。
制梁场场地宽阔平整:制梁采用固定式外模和整体式内模,并按1:1配置;存梁采用单层存梁方式;制梁占用台座的周期为4—6天,存梁周期为38天,梁场生产箱梁能力为每天2孔;采用900吨轮胎式搬梁机移梁;运梁车需经便道上桥出梁。
1号特大桥位于峡谷之中,墩高变化较大(4米~30米),采用2台移动模架同步施工。每台移动模架拼装时间为1.5个月,生产能力为每月2孔。
龙门吊、提梁机、汽车吊、拌和站、布料机、混凝土输送泵、混凝土罐车、蒸汽养护系统以及模板系统等。
(四)背景资料:
某新建铁路桥梁工程一标段共有595孔32米简支整孔箱梁,分布于23座桥上。其中1号特大桥的30孔箱梁采用移动模架施工,其他采用预制架设施工。
制梁场场地宽阔平整:制梁采用固定式外模和整体式内模,并按1:1配置;存梁采用单层存梁方式;制梁占用台座的周期为4—6天,存梁周期为38天,梁场生产箱梁能力为每天2孔;采用900吨轮胎式搬梁机移梁;运梁车需经便道上桥出梁。
1号特大桥位于峡谷之中,墩高变化较大(4米~30米),采用2台移动模架同步施工。每台移动模架拼装时间为1.5个月,生产能力为每月2孔。
(四)背景资料:
某新建铁路桥梁工程一标段共有595孔32米简支整孔箱梁,分布于23座桥上。其中1号特大桥的30孔箱梁采用移动模架施工,其他采用预制架设施工。
制梁场场地宽阔平整:制梁采用固定式外模和整体式内模,并按1:1配置;存梁采用单层存梁方式;制梁占用台座的周期为4—6天,存梁周期为38天,梁场生产箱梁能力为每天2孔;采用900吨轮胎式搬梁机移梁;运梁车需经便道上桥出梁。
1号特大桥位于峡谷之中,墩高变化较大(4米~30米),采用2台移动模架同步施工。每台移动模架拼装时间为1.5个月,生产能力为每月2孔。
(五)背景资料:某集团公司总承包某新建铁路一标段工程。该工程设计标准为时速160km/h的客货共线;单线有砟轨道,并为跨区间无缝线路。新建铁路的中间车站与既有铁路车站相接。工程内容包含路基、桥涵、隧道、轨道,不包含制梁、“四电”和站房。奇林隧道为控制性工程。要求在工程开工一年后,开始轨道施工。
主要结构物位置如下图所示。
(五)背景资料:某集团公司总承包某新建铁路一标段工程。该工程设计标准为时速160km/h的客货共线;单线有砟轨道,并为跨区间无缝线路。新建铁路的中间车站与既有铁路车站相接。工程内容包含路基、桥涵、隧道、轨道,不包含制梁、“四电”和站房。奇林隧道为控制性工程。要求在工程开工一年后,开始轨道施工。
主要结构物位置如下图所示。
车站附近设臵铺轨基地,隧道外采用单枕综合铺设法的机械铺轨方案。奇林隧道采用人工布枕、推轨法施工方案。
(五)背景资料:某集团公司总承包某新建铁路一标段工程。该工程设计标准为时速160km/h的客货共线;单线有砟轨道,并为跨区间无缝线路。新建铁路的中间车站与既有铁路车站相接。工程内容包含路基、桥涵、隧道、轨道,不包含制梁、“四电”和站房。奇林隧道为控制性工程。要求在工程开工一年后,开始轨道施工。
主要结构物位置如下图所示。
(五)背景资料:某集团公司总承包某新建铁路一标段工程。该工程设计标准为时速160km/h的客货共线;单线有砟轨道,并为跨区间无缝线路。新建铁路的中间车站与既有铁路车站相接。工程内容包含路基、桥涵、隧道、轨道,不包含制梁、“四电”和站房。奇林隧道为控制性工程。要求在工程开工一年后,开始轨道施工。
主要结构物位置如下图所示。