首页
题库
网课
在线模考
桌面端
登录
搜标题
搜题干
搜选项
0
/ 200字
搜索
问答题
设α,β为三维单位列向量,并且α
T
β=0,记A=αα
T
+ββ
T
,证明:
齐次线性方程组Ax=0有非零解;
答案:
因为A为3阶方阵,且r(αα
T
)=1,r(ββ
T
)=1,于是
r(...
点击查看完整答案
在线练习
手机看题
你可能感兴趣的试题
问答题
对一切实数t,f(t)连续,且f(t)>0,f(-t)=f(t),对于函数
(-a≤x≤a),回答下列问题:
证明F’(x)单调增加;
答案:
因
则
令t=-u,则
故
因此F’(x)单调增加。
点击查看完整答案
手机看题
问答题
已知函数z=z(x,y)满足
设
对函数Ψ=Ψ(u,v),求证
答案:
由解得这样便是u,v的复合函数,对u求偏导数得
利用和z(x,y)满足等式,有
点击查看完整答案
手机看题
问答题
曲线y=f(x)(x≥0,y≥0)连续且单调,从其上任一点A作x轴与y轴的垂线,垂足分别是B和C,若由直线AC,y轴和曲线本身包围的图形的面积等于矩形OBAC的面积的
,求曲线的方程。
答案:
(1) 如图7所示,当f(x)单调增加时,在曲线上任取点A(a,f(a)),由题意得
...
点击查看完整答案
手机看题
问答题
设α,β为三维单位列向量,并且α
T
β=0,记A=αα
T
+ββ
T
,证明:
齐次线性方程组Ax=0有非零解;
答案:
因为A为3阶方阵,且r(αα
T
)=1,r(ββ
T
)=1,于是
r(...
点击查看完整答案
手机看题
问答题
设在区间[nπ,(n+1)π]上由曲线y=e
-x
sinx与x轴所围成的平面图形的面积为S
n
(n=0,1,2,…),求级数
的值。
答案:
当n为偶数时,y=e
-x
sinx≥0;当n为奇数时,y=e
-x
sinx≤0。
所以
则
得
又
所以
点击查看完整答案
手机看题
问答题
对一切实数t,f(t)连续,且f(t)>0,f(-t)=f(t),对于函数
(-a≤x≤a),回答下列问题:
当x为何值时,F(x)取得最小值;
答案:
令F’(x)=0,得x=0(由于f(x)>0),所以x=0是F(x)的唯一驻点,又F"(0)=2f(0)>0,故x=0时...
点击查看完整答案
手机看题
问答题
已知
相似,试求a,b,c及可逆矩阵P,使P
-1
AP=B。
答案:
因为
故B的特征值为λ
1
=1,λ
2
=2,λ
3
...
点击查看完整答案
手机看题
问答题
设有一批产品成箱出售,每箱有产品10件,各箱含1件次品、2件次品、3件次品的概率分别为60%,20%和20%;顾客购买时,由售货员随意选一箱,顾客开箱任取4件进行检验,若发现次品不多于1件,则确定购买此箱产品,否则不买。
答案:
设B={顾客购买一箱产品},A
i
={一箱产品中含有i件次品
点击查看完整答案
手机看题
问答题
假设X是任意总体,μ=E(X)和σ
2
=D(X)存在,X
1
,X
2
,…,X
n
是来自X的简单随机样本,
是样本均值,记
求:
E(D);
答案:
由于X
1
,X
2
,…,X
n
独立同分布,
而且可得
点击查看完整答案
手机看题
问答题
设α,β为三维单位列向量,并且α
T
β=0,记A=αα
T
+ββ
T
,证明:
A相似于矩阵
答案:
由(Ⅰ)知|A|=0,从而A有零特征值λ
1
=0,Ax=0的非零解x
0
即为λ<...
点击查看完整答案
手机看题
问答题
对一切实数t,f(t)连续,且f(t)>0,f(-t)=f(t),对于函数
(-a≤x≤a),回答下列问题:
若F(x)的最小值可表示为f(a)-a
2
-1,求f(t)。
答案:
令两边对a求导,得2af(a)=f’(a)-2a,则令a=0。可得f(0)=1,这表明f(t)是微分方程y’-2ty=2...
点击查看完整答案
手机看题
问答题
设有一批产品成箱出售,每箱有产品10件,各箱含1件次品、2件次品、3件次品的概率分别为60%,20%和20%;顾客购买时,由售货员随意选一箱,顾客开箱任取4件进行检验,若发现次品不多于1件,则确定购买此箱产品,否则不买。
若顾客共挑选150箱这样的产品,求确定购买产品箱数的数学期望与方差。
答案:
设X表示顾客挑选150箱后确定购买的箱数,则易知X服从二项分布故
点击查看完整答案
手机看题
微信扫码免费搜题