问答题

【简答题】设f(x)在[0,1]上有连续的二阶导数,且f'(0)=f'(1)证明:存在ξ属于(0,1)使得∫(0->1)f(x)dx=[f(0)+f(1)]/2

答案: 分部积分,∫(0->1)f(x)dx=∫(0->1)d[f(x)(x-1/2)]-∫(0->1)f'(x)(x-...
在线练习
微信扫码免费搜题